ESTUDIO DEL MOVIMIENTO
Movimiento: Es un fenómeno físico que se define como todo cambio de posición en el espacio que experimentan los cuerpos de un sistema, con respecto a ellos mismo o a otro cuerpo que se toma como referencia. Todo cuerpo en movimiento describe una trayectoria.
Antes de comensar describiendo las ecuaciones y variables es importante identificar los tipos de movimiento presentes en física:
MOVIMIENTO RECTILÍNEO
En el movimiento Rectilíneo lo definimos por las ecuaciones del movimiento rectilíneo: posición, velocidad y aceleración:
Posición de una partícula
La posición de un cuerpo, considerado como una partícula, sobre una recta, es determinada por la distancia del punto respecto a un punto origen.
Si esta posición permanece invariable al transcurrir el tiempo, es decir, si la distancia del punto al origen es constante, diremos que el cuerpo se encuentra en reposo con respecto al origen.
Si esta posición varía con el tiempo, es decir, si la distancia del punto respecto al origen varía en función del tiempo, diremos que el cuerpo está en movimiento con respecto al origen y evidentemente con respecto a todos los cuerpos en reposo con el origen.
Las unidades de posición o de desplazamiento son el m, cm, Km., es decir, que son unidades de LONGITUD.
Ejemplo 1: Una persona dentro de un ascensor en movimiento, esta en reposo con respecto al ascensor, pero está en movimiento con respecto al suelo.
En conclusión, es fijando el origen como se sabe si un cuerpo está en reposo o en movimiento. Si no se menciona el origen, se subentiende que es un origen fijo sobre la tierra.
Puede haber tiempos negativos como, por ejemplo, las cuentas regresivas antes de la hora 0 del lanzamiento de un satélite.
Matemáticamente, diremos que el vector posición es una función del tiempo y escribiremos:
\(\vec{x}=\vec{x}(t)\)
Ejemplo 2: Sobre una recta, un cuerpo tiene una posición dada por la ecuación:
\(x=50t\)
Donde \(x\) está expresada en \(Km\) y tiempo \(t\) en horas.
Podemos observar que para \(t_0=0\) la posición es \(x_0=0\), es decir que el cuerpo está en el origen y ésta es su posición inicial.
A medida que aumenta el tiempo el cuerpo cambia de posición y se aleja del origen.
Si una particula se desplaza de una posición inicial \(\vec{x_i}\) a una posición final \(\vec{x_f}\), el desplazamiento estará dado por el vector:
\(\Delta\vec{x}=\vec{x_f}-\vec{x_i}\) (Leer delta x igual a...).
Y podemos decir que ese desplazamiento o cambio de posición se efectuó en un intervalo de tiempo:
\(\Delta t=t_f-t_i\) (Leer delta t igual a ...).
El símbolo \(\Delta\) significa incremento.
PREGUNTA: Sobre una calle, un automóvil tiene una posición dada por la ecuación \(x=30t\) (x en km y t en horas), ¿En 3 horas cuál es su posición?